Colorado Measures of Academic Success

CMAS Grade 4 Mathematics Frameworks

Concepts and skills explicitly identified in the Colorado Academic Standards (CAS) are the basis for the Colorado Measures of Academic Success (CMAS) assessment. CMAS Mathematics Frameworks list the percent representation and number of score points for each of the reporting categories and standards areas that appear on the summative assessments. They also specify the Evidence Outcomes that are included on the state assessments. The Prepared Graduate Statements in the CAS, or the Standards for Mathematical Practice (SMP), provide the basis for Subclaims C and D, Reasoning and Modeling tasks. These tasks are based on grade-level math standards and securely held knowledge from the previous grade level. Reasoning tasks engage in practices reflected in Prepared Graduate Statements SMP 3, Construct Viable Arguments and Critique the Reasoning of Others, and SMP 6, Attend to Precision. Modeling tasks engage in the practices reflected in SMP 4, Model with Mathematics. Each Content Standard is assessed in each grade level.

Reporting Category	Colorado Academic Standards Summative Assessment Framework-FINAL Math Grade 4	\% of Score Points of Total Test	Points
	2. Compare two fractions with different numerators and different denominators, e.g., by creating common denominators or numerators, or by comparing to a benchmark fraction such as $\frac{1}{2}$. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols $>,=$, or $<$, and justify the conclusions, e.g., by using a visual fraction model. (CCSS: 4.NF.A.2) Grade Level Expectation: 4.NF.B. Number \& Operations-Fractions: Build fractions from unit fractions. Evidence Outcomes: 3. Understand a fraction $\frac{a}{b}$ with $a>1$ as a sum of fractions $\frac{1}{b}$. (CCSS: 4.NF.B.3) a. Understand addition and subtraction of fractions as joining and separating parts referring to the same whole. (CCSS: 4.NF.B.3.a) b. Decompose a fraction into a sum of fractions with like denominators in more than one way, recording each decomposition by an equation. Justify decompositions, e.g., by using a visual fraction model. Examples: $\frac{3}{8}=$ $\frac{1}{8}+\frac{1}{8}+\frac{1}{8^{\prime}} ; \frac{3}{8}=\frac{1}{8}+\frac{2}{8} ; 2 \frac{1}{8}=1+1+\frac{1}{8}=\frac{8}{8}+\frac{8}{8}+\frac{1}{8}$. (CCSS: 4.NF.B.3.b) c. Add and subtract mixed numbers with like denominators, e.g., by replacing each mixed number with an equivalent fraction, and/or by using properties of operations and the relationship between addition and subtraction. (CCSS: 4.NF.B.3.c) d. Solve word problems involving addition and subtraction of fractions referring to the same whole and having like denominators, e.g., by using visual fraction models and equations to represent the problem. (CCSS: 4.NF.B.3.d) 4. Apply and extend previous understandings of multiplication to multiply a fraction by a whole number. (CCSS: 4.NF.B.4) a. Understand a fraction $\frac{a}{b}$ as a multiple of $\frac{1}{b}$. For example, use a visual fraction model to represent $\frac{5}{4}$ as the product $5 \times \frac{1}{4}$, recording the conclusion by the equation $\frac{5}{4}=5 \times \frac{1}{4}$. (CCSS: 4.NF.B.4.a) b. Understand a multiple of $\frac{a}{b}$ as a multiple of $\frac{1}{b}$, and use this understanding to multiply a fraction by a whole number. For example, use a visual fraction model to express $3 \times \frac{2}{5}$ as $6 \times \frac{1}{5^{\prime}}$, recognizing this product as $\frac{6}{5}$. (In general, $n \times \frac{a}{b}=\frac{n \times a}{b}$.) (CCSS: 4.NF.B.4.b)		

Reporting Category	Colorado Academic Standards Summative Assessment Framework-FINAL Math Grade 4	\% of Score Points of Total Test	Points
	c. Solve word problems involving multiplication of a fraction by a whole number, e.g., by using visual fraction models and equations to represent the problem. For example, if each person at a party will eat $\frac{3}{8}$ of a pound of roast beef, and there will be 5 people at the party, how many pounds of roast beef will be needed? Between what two whole numbers does your answer lie? (CCSS: 4.NF.B.4.c)		
	Grade Level Expectation: 4.NF.C. Number \& Operations—Fractions: Use decimal notation for fractions, and compare decimal fractions. Evidence Outcomes: 5. Express a fraction with denominator 10 as an equivalent fraction with denominator 100 , and use this technique to add two fractions with respective denominators 10 and 100. (Students who can generate equivalent fractions can develop strategies for adding fractions with unlike denominators in general. But addition and subtraction with unlike denominators in general is not a requirement at this grade.) For example, express $\frac{3}{10}$ as $\frac{30}{100^{\prime}}$ and add $\frac{3}{10}+\frac{4}{100}=\frac{34}{100}$. (CCSS: 4.NF.C.5) 6. Use decimal notation for fractions with denominators 10 or 100 . For example, rewrite 0.62 as $\frac{62}{100}$; describe a length as 0.62 meters; locate 0.62 on a number line diagram. (CCSS: 4.NF.C.6) 7. Compare two decimals to hundredths by reasoning about their size. Recognize that comparisons are valid only when the two decimals refer to the same whole. Record the results of comparisons with the symbols $>,=$, or $<$, and justify the conclusions, e.g., by using a visual model. (CCSS: 4.NF.C.7) Algebra and Functions Grade Level Expectation: 4.OA.A. Operations \& Algebraic Thinking: Use the four operations with whole numbers to solve problems. Evidence Outcomes: 1. Interpret a multiplication equation as a comparison, e.g., interpret $35=5 \times 7$ as a statement that 35 is 5 times as many as 7 and 7 times as many as 5 . Represent verbal statements of multiplicative comparisons as multiplication equations. (CCSS: 4.OA.A.1) 2. Multiply or divide to solve word problems involving multiplicative comparison, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem, distinguishing multiplicative comparison from additive comparison. (See Appendix, Table 2) (CCSS: 4.OA.A.2) 3. Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding. (CCSS: 4.OA.A.3)		

Reporting Category	Colorado Academic Standards Summative Assessment Framework-FINAL Math Grade 4	\% of Score Points of Total Test	Points
Subclaim B	Supporting Content	14	7
	Algebra and Functions		
	Grade Level Expectation: 4.OA.B. Operations \& Algebraic Thinking: Gain familiarity with factors and multiples. Evidence Outcomes: 4. Find all factor pairs for a whole number in the range 1-100. Recognize that a whole number is a multiple of each of its factors. Determine whether a given whole number in the range 1-100 is a multiple of a given one-digit number. Determine whether a given whole number in the range $1-100$ is prime or composite. (CCSS: 4.OA.B.4)		
	Grade Level Expectation: 4.OA.C. Operations \& Algebraic Thinking: Generate and analyze patterns. Evidence Outcomes: 5. Generate a number or shape pattern that follows a given rule. Identify apparent features of the pattern that were not explicit in the rule itself. For example, given the rule "Add 3" and the starting number 1, generate terms in the resulting sequence and observe that the terms appear to alternate between odd and even numbers. Explain informally why the numbers will continue to alternate in this way. (CCSS: 4.OA.C.5)		
	Data, Statistics, and Probability		
	Grade Level Expectation: 4.MD.A. Measurement \& Data: Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit. Evidence Outcomes: 1. Know relative sizes of measurement units within one system of units including $\mathrm{km}, \mathrm{m}, \mathrm{cm} ; \mathrm{kg}, \mathrm{g} ; \mathrm{lb}, \mathrm{oz}$; $\mathrm{l}, \mathrm{ml} ; \mathrm{hr}, \mathrm{min}$, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table. For example, know that 1 ft is 12 times as long as 1 in . Express the length of a 4 ft snake as 48 in. Generate a conversion table for feet and inches listing the number pairs $(1,12),(2,24)$, $(3,36), \ldots$ (CCSS: 4.MD.A.1) 2. Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale. (CCSS: 4.MD.A.2) 3. Apply the area and perimeter formulas for rectangles in real-world and mathematical problems. For example, find the width of a rectangular room given the area of the flooring and the length, by viewing the area formula as a multiplication equation with an unknown factor. (CCSS: 4.MD.A.3)		

Reporting Category	Colorado Academic Standards Summative Assessment Framework-FINAL Math Grade 4	\% of Score Points of Total Test	Points
Subclaim C	Expressing Mathematical Reasoning	20-22	10-11
	Base explanations/reasoning on the properties of operations. Content Scope: Knowledge and skills articulated in 4.NBT.5, 4.NBT. 6		
	Base explanations/reasoning on the relationship between multiplication and division. Content Scope: Knowledge and skills articulated in 4.NBT. 6		
	Reason about the place value system itself. Content Scope: Knowledge and skills articulated in 4.NBT.A		
	Base arithmetic explanations/reasoning on concrete referents such as diagrams (whether provided in the prompt or constructed by the student in their response), connecting the diagrams to a written (symbolic) method. Content Scope: Knowledge and skills articulated in 4.NF.A, 4.NF.3a, 4.NF.3b, 4.NF.4a, 4.NF.4b, 4.NF.C		
	Distinguish correct explanation/reasoning from that which is flawed, and - if there is a flaw in the argument - present corrected reasoning. (For example, some flawed 'student' reasoning is presented and the task is to correct and improve it.) Content Scope: Knowledge and skills articulated in 4.OA.3, 4.NF.1, 4.NF.2, 4.NF.B, 4.NF.C, 3.OA.B, 3.NF, 3.MD.C		
	Present solutions to multi-step problems in the form of valid chains of reasoning, using symbols such as equals signs appropriately (for example, rubrics award less than full credit for the presence of nonsense statements such as $1+4=5+7$ $=12$, even if the final answer is correct), or identify or describe errors in solutions to multi-step problems and present corrected solutions. Content Scope: Knowledge and skills articulated in 4.OA.3, 4.NF.3c, 4.NF.3d, 4.NF.4c		
	Base explanations/reasoning on a number line diagram (whether provided in the prompt or constructed by the student in their response). Content scope: Knowledge and skills articulated in 4.NF.1, 4.NF.2, 4.NF.3a, 4.NF.4a, 4.NF.4b		
Subclaim D	Modeling and Application	18	9
	Solve multi-step contextual word problems with degree of difficulty appropriate to Grade 4, requiring application of knowledge and skills articulated in Sub-Claim A Evidence Statements.		
	Solve multi-step contextual word problems with degree of difficulty appropriate to Grade 4, requiring application of knowledge and skills articulated in 3.OA.A, 3.OA.8, 3.NBT, and/or 3.MD.		
	Total	100	50-51

