CMAS Science 2023 Performance Level Descriptors Grade 5 Science

Partially Met Expectations

Students who demonstrate a limited command of the concepts, skills, and practices embodied by the Colorado Academic Standards assessed at their grade level. They will need additional academic support to engage successfully in further studies in this content area.

Approached Expectations

Students who demonstrate a moderate command of the concepts, skills, and practices embodied by the Colorado Academic Standards assessed at their grade level. They will likely need additional academic support to engage successfully in further studies in this content area.

Met Expectations

Students who demonstrate a strong command of the concepts, skills, and practices embodied by the Colorado Academic Standards assessed at their grade level. They are academically prepared to engage successfully in further studies in this content area.

Exceeded Expectations

Students who demonstrate a distinguished command of the concepts, skills, and practices embodied by the Colorado Academic Standards assessed at their grade level. They are academically well prepared to engage successfully in further studies in this content area.

Color Legend for Three-Dimensional Alignment

Colorado Essential Skills and Science and Engineering Practice

Grade Level Expectation

Cross Cutting Concept

	Physical Science				
	Partially Met Expectations	Approached Expectations	Met Expectations	Exceeded Expectations	
PG 1.	Students can use the f	ull range of science and engir	neering practices to ma	ke sense of natural	
	phenomena and solve prol	blems that require understan	ding structure, proper	ties, and interactions of	
		matter.			
GLE	Use a familiar model to	Use a familiar model to	Develop models	Develop and refine	
1.1	describe matter as	describe matter as	from previously	models to describe that	
	consisting of particles.	consisting of particles and	encountered or	even when an object is	
	OR	relate that the scale of	well-practiced ideas	immensely large, the	
	Explain that some matter is	those particles makes	to describe that	matter in it consists of	
	on a scale too small to be	them too small to be seen.	matter consists of	particles that are too	
	seen.	[1.1.a]	particles that are	small in scale to be	
	[1.1.a]		too small in scale to	seen.	
			be seen.	[1.1.a]	
			[1.1.a]		
	While following explicit	While following explicit	When investigating	Engage in phenomena	
	procedural methods, make	procedural methods,	phenomena	not referenced in the	
	observations of properties	make observations of	referenced in the	EO to investigate how	
	used to identify materials	properties used to identify	EO, observe,	to use scale,	
	and objects.	materials and objects, and	measure, and make	proportion, and	
	OR	demonstrate simple,	predictions using	quantity to interpret	
	Identify materials and	mechanical aspects of	scale, proportion,	and evaluate	
	objects as having different	standard units of measure	and quantity in	observations or	
	properties that can be	for weight, time,	standard units	measurements of	
	described with units of	temperature, and volume.	(weight, time,	properties to identify	
	measure for weight, time,	[1.1.b]	temperature, and	materials.	
	temperature, and volume.		volume), <mark>to</mark>	[1.1.b]	
	[1.1.b]		routinely identify		
			materials from the		
			very small to the		
			immensely large,		
			based on their		
			properties.		
			[1.1.b]		

GLE 1.2	Exhibit variable degrees of success in measuring and describing the change in quantities of matter when heating, cooling, or mixing substances. [1.2.a]	Measure and/or use simple graphs of quantities such as weight when heating, cooling, or mixing substances to show that matter is conserved in these processes. [1.2.a]	Measure and describe changes in quantities such as weight when heating, cooling, or mixing substances according to clearly established procedures, and/or interpret provided graphs to compare the quantity of matter before and after such changes. [1.2.a]	Measure and create and/or use complex graphs of quantities such as weight when heating, cooling, or mixing substances to show that matter is conserved in these processes regardless of other observed changes. [1.2.a]
	Identify changes caused by the mixing of substances. OR Follow provided investigational procedures to mix substances and describe the observed results. [1.2.b]	Follow provided investigational procedures to mix substances, observe and/or use the results, to explain that the production of a new substance is a possible effect of a chemical change. [1.2.b]	Conduct and/or use an investigation to determine whether the process of mixing substances causes new substances to form. [1.2.b]	Plan and conduct and/or use an investigation to determine whether the process of mixing substances causes new substances to form. [1.2.b]
GLE 1.3	Identify gravity as the cause that makes objects fall toward the ground. [1.3.a]	Use or describe evidence that Earth's gravity is a force that pulls objects down. [1.3.a]	Use or describe evidence to support or make an argument that Earth's gravity is the cause of a force that pulls objects toward the center of the planet. [1.3.a]	Use evidence, data, and models to engage in argument about "down" being a local description of the direction of Earth's gravity, which causes objects near its surface to be pulled toward its center. [1.3.a]
GLE 1.4	Use a simple model to show that the Sun and plants contribute to animals' food. OR Describe, in simple, mechanistic terms, that animals' food is dependent on light coming from the Sun. [1.4.a]	Use a simple model to illustrate the transfer of energy from the Sun to the substances animals use for food. [1.4.a]	Use models to interpret multiple facets of information showing that energy in animals' food was once energy from the Sun and has been transferred in various ways between objects. [1.4.a]	Develop a model to make novel connections between the ability of energy to be transferred between objects and the understanding that energy in animals' food was once energy from the Sun. [1.4.a]

Life Science					
	Partially Met Expectations	Approached Expectations	Met Expectations	Exceeded Expectations	
PG 6.	Students can use the full range of science and engineering practices to make sense of natural				
	phenomena and solve prob	lems that require understand	ding how living systems	s interact with the biotic	
		and abiotic enviro	onment.		
GLE	Describe evidence that	Use evidence to describe	Use evidence, data,	Use evidence, data, or	
2.1	plants use air and water for	the flow of matter	or models to	models to support an	
	growth.	between the air, water,	support an	argument about the	
	OR	and plants.	argument about the	flow of matter that	
	Describe plants as needing	[2.1.a]	flow of matter that	allows both ordinary	
	several kinds of matter for		allows plants to get	and unusual plants and	
	growth.		the materials they	other plantlike	
	[2.1.a]		need for growth	structures, such as	
			primarily from air	algae, to get the	
			and water (not from	materials they need for	
			the soil).	growth primarily from	
			[2.1.a]	air and water (not from	
				the soil).	
				[2.1.a]	
GLE	Use a simple, familiar	Use a simple, familiar	Develop a model to	Analyze and compare	
2.2	model to show how matter	model to describe	explain ecosystems	models of ecosystems,	
	cycles between air, soil,	environmental	as a set of	environmental	
	and organisms.	components and their	environmental	components, and their	
	OR	interactions as a system in	components and	interactions in the	
	Describe how matter cycles	which matter cycles	how they interact in	cycling of matter and	
	between the system of air,	between air, soil, plants,	the cycling of matter	energy between air,	
	soil, and organisms.	animals, and	between air, soil,	soil, plants, animals,	
	[2.2.a]	decomposers.	plants, animals, and	and decomposers,	
		[2.2.a]	decomposers,	including microbes.	
			including microbes.	[2.2.a]	
			[2.2.a]		

	Earth and Space Science				
	Partially Met Expectations	Approached Expectations	Met Expectations	Exceeded Expectations	
PG	Students can use the f	full range of science and engi	neering practices to mal	ke sense of natural	
9.	phenomena and solve	problems that require unders	standing the universe an	d Earth's place in it.	
GLE	Use evidence to compare	Interpret routine	Use evidence, data,	Use evidence, data, or	
3.1	the relative brightness of	evidence, data, or models	or models to support	models to support an	
	the Sun and stars.	that relate a star's	an argument that a	argument about the	
	OR	distance from Earth to its	star's distance from	impact of interstellar	
	Identify distance from	relative brightness.	Earth affects its	distances on the	
	Earth as a factor in the	OR	relative brightness,	relative brightness of	
	Sun's brightness compared	Describe stars as differing	and that the Sun's	stars in familiar and	
	to stars, and describe the	greatly in size and	apparent brightness	unfamiliar contexts	
	distance between Earth	distance.	is due to this effect.	(e.g., how the Sun's	
	and the stars as immensely	[3.1.a]	OR	appearance would be	
	large.		Support an argument	different when viewed	
	[3.1.a]		that stars differ	from Pluto or from the	
			greatly in size and	planets of another	
			distance.	star).	
			[3.1.a]	[3.1.a]	
GLE	Use simple, familiar	Follow clearly prescribed	Make and record	Analyze observations	
3.2	graphical displays to show	procedures to represent	observations and	and complex data or	
	daily changes in day and	data in a simple graphical	data in a graphical	graphical displays that	
	night, and in length and	display that shows	display that shows	show complicated or	
	direction of shadows.	patterns of daily changes	patterns due to	simultaneous patterns	
	OR	in length and direction of	Earth's orbit and	due to Earth's orbit and	
	Describe, using simple,	shadows, day and night,	rotation and the	rotation and the orbit	
	familiar patterns, daily	and the seasonal	orbit of the Moon	of the Moon around	
	changes in day and night,	appearance of some stars	around Earth,	Earth, including daily	
	and in length and direction	in the night sky.	including daily	changes in length and	
	of shadows.	[3.2.a]	changes in length	direction of shadows,	
	[3.2.a]		and direction of	day and night, and the	
			shadows, day and	seasonal appearance of	
			night, and the	some stars in the night	
			seasonal appearance	sky.	
			of some stars in the	[3.2.a]	
			night sky.		
			[3.2.a]		

GLE 3.3	When provided familiar models of two Earth systems interacting, identify one or both of the systems (i.e., geosphere, hydrosphere, atmosphere, and biosphere), or describe an impact of the interaction on at least one of them. [3.3.a]	Use familiar models to describe Earth's major systems (i.e., geosphere, hydrosphere, atmosphere, and biosphere) and how they interact to affect Earth's surface materials and processes. [3.3.a]	Develop a model to describe interactions between Earth's major systems (i.e., geosphere, hydrosphere, and biosphere) and the impact of these interactions on Earth's surface materials and processes. [3.3.a]	Develop, analyze, or compare novel models of interactions between Earth's major systems (i.e., geosphere, hydrosphere, atmosphere, and biosphere), or suggest ways that some interactions might affect the overall system of Earth's surface materials and processes. [3.3.a]
GLE 3.4	Use standard units to describe the amounts and percentages of water in various reservoirs and distinguish between salt water and freshwater. [3.4.a]	Use provided graphs to identify or describe the relative amounts of salt water and freshwater in various reservoirs. [3.4.a]	Use, describe, and/or graph quantities such as area, volume, and weight, provided in standard units, to relate the amounts and proportions of salt water and freshwater in various reservoirs (oceans, lakes, rivers, glaciers, groundwater, and polar ice caps). [3.4.a]	Communicate, with graphs of multiple interrelated quantities such as area, volume, and weight, findings about the amounts and proportions of salt water and freshwater in various reservoirs (oceans, lakes, rivers, glaciers, groundwater, and polar ice caps). [3.4.a]

GLE 3.5	Communicate one or more societal activities that have had effects on land, ocean, atmosphere, or outer space. OR Describe societal activities as one part of interacting natural systems, with others being land, ocean, atmosphere, or outer	Communicate information about ways societal activities have had major effects on natural systems, whether land, ocean, atmosphere, or outer space.	Obtain and combine information from reliable, familiar media about societal activities that have had major effects on systems, including land, ocean, atmosphere, and outer space.	Explore novel and complex information sources to obtain and combine reliable information on societal activities that have had major effects on systems and system components of land, ocean, atmosphere, and outer space.
	space. Describe science ideas as one tool that communities can use to protect the environment. OR Identify the environment as a system communities can protect. [3.5.a]	Summarize provided information about ways individual communities can protect Earth's resources, environment and systems. [3.5.a]	Communicate findings about ways individual communities use science ideas to protect Earth's resources, environment, and systems. [3.5.a]	Evaluate information about scientific solutions that individual communities might use to protect Earth's resources, environment, and systems, including unintentional effects on those systems. [3.5.a]